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Permeability of self-affine rough fractures

German Drazer and Joel Koplik
Benjamin Levich Institute and Department of Physics, City College of the City University of New York, New York, New York 1

~Received 19 June 2000!

The permeability of two-dimensional fractures with self-affine fractal roughness is studied via analytic
arguments and numerical simulations. The limit where the roughness amplitude is small compared with
average fracture aperture is analyzed by a perturbation method, while in the opposite case of narrow aperture,
we use heuristic arguments based on lubrication theory. Numerical simulations, using the lattice Boltzmann
method, are used to examine the complete range of aperture sizes, and confirm the analytic arguments.

PACS number~s!: 47.11.1j, 02.50.2r, 47.55.Mh, 62.20.Mk
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I. INTRODUCTION

The transport of fluids through geological media such
hydrocarbon and water reservoirs involves a combination
flow through the microscopic pore space of the rock its
and flows through macroscopic channels such as fractu
The first case is relatively well understood, at least in pr
ciple @1,2#, by means of models that treat the pore space
random network, and then use effective medium or perc
tion concepts for the transport. Fractures are typically m
eled as simple straight-sided channels, with a cubic rela
between fluid flux and average aperture, and a challeng
problem is to understand the dynamics of flow in a mac
scopic fracture network@3–6#. Typically the surface of a
single fracture appears fairly smooth, aside from some sm
scale superficially random roughness, and Poiseuille flow
a straight channel is the obvious model for fluid flow. Ho
ever, more careful analysis@7# shows that common geolog
cal fractures in fact have correlated, self-affine fractal s
faces. The roughness exponent, whose precise definitio
recalled below, is usually found@8,9# to be close to 0.8,
surprisingly insensitive to the material and the fracturi
process.~Other values may arise from intergranular effe
@10#.!

The aim of this paper is to study the permeability
single self-affine two-dimensional fractures. We shall s
that it is possible to obtain general analytic expressions
two limiting cases, where the roughness associated with
fracture surface is either small or large compared to the m
aperture. The theoretical predictions will be supported
numerical simulations, using the lattice Boltzmann meth
which of course can address the case of intermediate-s
roughness as well. In subsequent work, we will consider
fully three-dimensional case, and go on to consider m
general transport processes in fractures, involving both p
sive tracers and finite-sized suspended particles. Complim
tary experimental studies on laboratory samples of fractu
rock are in progress elsewhere@11#.

To the extent that the fluctuations in the height are sm
compared to the aperture width, the effect on permeabilit
modest, and we will obtain small corrections to the us
cubic law, but the effects on other transport processes
much more significant. For example, passive tracer dis
sion is very sensitive to the presence of any slow zones in
velocity field, and even uncorrelated roughness leads to
PRE 621063-651X/2000/62~6!/8076~10!/$15.00
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nificant long-time tails@12#. Similarly, the deposition and
erosion of solid particles from a surface is sensitive to
local shear stress, which in turn can change dramatically
surface roughens.

In the opposite extreme of a very narrow fracture, t
flow field changes qualitatively as the fluid winds through
highly irregular channel. Aside from the challenge of es
mating the permeability of difficult geometry in terms of i
statistical characteristics, there are further effects aris
from the fact that the two sides of the fracture originate fro
a single crack. In the fractal case, the spatial correlati
between the two sides of a fracture lead to velocity fie
correlations, which again strongly affect tracer motion@13–
15#. In Ref. @13# the authors estimate the permeability sc
ing in the limit of large system size. They consider the fra
ture surface as asymptotically flat and subsequently desc
the flow as a Poiseuille one between parallel plates. On
other hand, Refs.@14,15# are mainly devoted to the study o
tracer dispersion. These works, in order to compute the s
tial variation of the~aperture-averaged! velocity, made use of
a very approximate velocity field, obtained in the lubricati
limit. One of the motivations of this paper is to examine t
validity of the lubrication approximation for the velocit
field.

The organization of this paper is as follows. We first r
call some basic facts about self-affine surfaces, and give
algorithm used to generate them numerically, and also
plain the lattice Boltzmann method used for the numeri
simulations. We then consider the case of fractures wit
wide average aperture, obtain a perturbative estimate for
permeability, and test it numerically. We then turn to narro
fractures, first in the case where the two sides are sim
displaced normally to the mean fracture plane, and sec
when there is a lateral shift as well. Finally, we summar
the results, and indicate the next steps.

II. PRELIMINARIES

A. Self-affine roughness

We briefly review the mathematical characterization
self-affinity, and its implementation in this paper. We co
sider a rock surface without overhangs, whose heigh
given by a single-valued functionz(x,y), where the coordi-
natesx andy lie in the mean plane of the fracture. Self-affin
8076 ©2000 The American Physical Society
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PRE 62 8077PERMEABILITY OF SELF-AFFINE ROUGH FRACTURES
surfaces@16# display scale invariance with different dilatio
ratios along different spatial directions, remaining unchan
under the rescaling

x→l1x, y→l2y, z→l3z. ~1!

Here we consider disordered media, so these scaling
apply only in an ensemble or spatial average sense. Exp
ment indicates that for many materials isotropy can be
sumed in the mean plane, implying that there is only o
nontrivial exponent relating the dilation ratio in the me
plane to the scaling in the perpendicular direction, i.e.,l1
5l2[l, andl35lz, with

z~x,y!5l2zz~lx,ly!, ~2!

wherez is the roughness or Hurst exponent@17#.
We assume that the process of fracturing the rock

‘‘clean,’’ in the sense that the rock breaks so as sepa
along one single-valued surface without subsequent de
mation and without producing loose interstitial material. W
shall emphasize two complimentary limiting situations,
which the two surfaces are either well separated with res
to each other, or very close to each other. IfL is the lateral
size of the fracture in the mean plane, the typical range of
fluctuations~the difference between the maximum and mi
mum values ofz) scales asR;Lz. If h is the mean width of
the fracture, withh!L, then the two cases correspond
R!h andR@h, respectively.

The local aperture of the crack is the key parameter
termining the fracture permeability, and three different ca
will be addressed. For large aperture, the roughness as
ated with the two sides of the fracture act independently,
it suffices to consider a channel with one rough and o
smooth boundary. In the case of a narrow fracture, the
relation between the two sides is a key feature, and we c
sider two possibilities. We first study fractures where t
upper surface has been simply translated a distanceh normal
to the mean plane, so that the local aperturea(x,y) equals
the constanth. Alternatively, the two surfaces may have
relative lateral displacementd in the mean fracture plane
accompanied by a displacementh in the perpendicular direc
tion, so that the two surfaces do not overlap. In this case
local aperture is given by the random variable,

ad~x,y!5z~x1d,y!2z~x,y!1h. ~3!

It turns out @18# that d is the lateral correlation length fo
fluctuations in the aperture, in the sense thatad(x,y) and
ad(x1Dx,y) decorrelate forDx@d.

In this paper we restrict ourselves to the two-dimensio
case where the surface is invariant in they direction,
z(x,y)5z(x), and the flow is forced in thex direction by a
constant pressure drop. In a subsequent paper we will ex
these calculations to fully three-dimensional fractures, bu
is convenient, both conceptually and in the numerical sim
lations, to regard the system as having a translationally
variant third dimension.

B. Numerical methods

Our aim is to study various aspects of the fracture perm
ability which are sensitive to the fracture roughness. The fi
d
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ingredient is the height functionz(x,y), a statistically self-
affine surface with periodic boundary conditions. The pe
odicity is not a physically essential ingredient here, but h
some calculational advantages in alleviating finite-size
fects. The surface is generated by a Fourier synth
method, based on power-law filtering of arrays of indepe
dent random numbers@19#. The random numbers are gene
ated using a Gaussian distribution, and then modulated b
appropriate power law. IfZ̃(k) is the Fourier transform of
the initial Gaussian random array, then the Fourier transfo
of the surface elevation is chosen to be

Z~k!5k2z21/2Z̃~k!. ~4!

~The 1/2 is appropriate for the self-affinecurve used here,
and would be 1 for a real rocksurface.!

In most cases the roughness exponent is chosen as
often-observed valuez50.8. The amplitude of the roughnes
can be expressed in terms of variance of the height distr
tion over the full range,

s25^@z~x!2^z~x!&#2&5
1

LE0

L

@z~x!2^z~x!&#2dx, ~5!

which in this case iss250.4960.06 for L5256. Alterna-
tively, the amplitude is given indirectly in terms of the rang
of the fluctuations asR5R1Lz, with R151.6660.4. In these
equations, and in the rest of the paper, the unit of length
that of the spacing between lattice points in the numer
calculations.

Since we consider fluid flow in a highly irregular geom
etry, and eventually hope to consider dispersion and the e
lution of the solid surface due to particle transport, the latt
Boltzmann~LB! method@20# is particularly convenient. In
this algorithm, fictitious particles move between neighbori
sites on a lattice, with suitable collision rules, and the bou
ary of the flow domain is simply a surface of sites where
rule is modified in some way to keep the particles out. W
use the face-centered-hypercubic~FCHC! -projected version
of the LB model, with a cubic lattice in three dimensions a
19 velocities~D3Q19 in the terminology of@21#!. We define
the lattice spacing as the unit of length, and the time step
the unit of time. As we are concerned with incompressi
flow, we do not need to introduce a dimension of mass.
what follows the macroscopic variables will be expressed
these units. The collision operator is approximated by
single relaxation time, the Bhatnagar-Gross-Krook mo
@22#, and the local equilibrium distribution given by@21# is
used. This pseudoequilibrium distribution locally preserv
mass and momentum values, and is formulated specific
to recover the Navier-Stokes equation at large length
time scales. For the no-slip solid boundaries, we use the s
plest implementation of particle exclusion—the bounce-ba
rule, in which a particle incident on the boundary reverses
direction. Periodic boundary conditions are used for the
flow and outflow surfaces. A constant pressure gradient fo
ing the fluid is added in thex direction, while the gap be-
tween surfaces extends overz, and the geometry is taken t
be translation invariant iny.
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8078 PRE 62GERMAN DRAZER AND JOEL KOPLIK
III. SMALL SURFACE DEVIATIONS

In this section we consider the case of a channel with
fractally rough wall, in the limit where the mean width
large compared to the amplitude of the roughness.
~re-!derive an elegant general result for the permeability, a
then an exact variant which gives the permeability of a p
turbed pore space. If the pore space perturbation is weak
leading-order correction is easy to evaluate and, when c
pared to numerical simulation, is seen to provide a reas
ably accurate estimate of the permeability.

A. Integral representations

We begin by deriving an integral representation for t
permeability, and then considering a perturbation in
boundary shape. Although we suspect that these results
known to many, we are not aware of an earlier publicat
containing them, although the electrical analog of the in
gral representation is in the literature@23#.

Consider a rectangular volume of a porous medium, p
odic in all directions, and the following surface integral:

I 5E
S
dsW•@uW ~rW !p~rW !#. ~6!

Here,uW andp are the velocity and pressure fields of a flu
that completely fills the pore space, assumed to satisfy
Stokes equations, and the surfaceS is the complete boundar
of the pore space, consisting of the inner grain surfaces
the porous regions of the outer boundary. The pressure
velocity fields are periodic, except that the pressure jumps
a constant amountP between two opposite faces in one d
rection, that of the mean flow. Now the velocity vanishes
the grain boundaries by the no-slip condition, and there
complete cancellation between the opposite faces in the
completely periodic directions, but in the flow direction th
remaining two faces of the box combine to give

I 5PE
E
dsW•uW ~rW !52PQ52

kP2S

mL
. ~7!

Here Q is the fluid flux through this end faceE, and the
minus sign arises because the outward normal is usedI.
The last equality follows from Darcy’s law, whereS is the
area of endE, k is the permeability,m the fluid viscosity, and
L the length of the box.

On the other hand, applying the divergence theorem
Eq. ~6!, we obtain

I 5E
V
dV¹W •~uW p!

5E
V
dV~uW •¹W p!5mE

V
dV~uW •¹W 2uW !52mE

V
dV~¹W uW !2,

~8!

where the volumeV is just the pore space. We have used fi
the incompressibility of the fluid, second the Stokes eq
tion, and third integration by parts. Comparing the two e
pressions forI, we have
e
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k5
L

S S m

PD 2E
V
dV(

i , j
~] iuj !

2. ~9!

The analogous formula for the electrical conductivitys,
which follows from Ohm’s law and the Laplace equatio
@23#, is

s5s0

L

S

1

F2E
V
dV(

i
~] if!2. ~10!

Here s0 is the conductivity of the pore fluid,f(rW) is the
potential, andF its difference across the sample. Note th
both of these formulas may also be derived by comparing
energy dissipation rate computed microscopically in the p
space to the same quantity computed using average fiel

We next derive an exact variant of the integral express
for the permeability~9! due to Wilkinson@24#, which allows
us to implement a perturbation analysis. Suppose we be
with a pore volumeV0 and known Stokes equation solution
p0 and uW 0, and thencontract the volume toV, where the
exact ~but unknown! solution is p5p01pe and uW 5uW 0

1uW e . The result to follow is true even if the volume chang
and alterations in the fields arenot small, but is probably
only useful in that limit, hence the suggestive subscripte.
Substituting into the dissipation integral on the right-ha
side of Eq.~9!, and suppressing the summation sign for t
moment, we obtain

E
V
dV~] iuj !

25E
V
dV@~] iu0,j !

21~] iue, j !
2#

12E
V
dV] iu0,j] iue, j . ~11!

The last integral on the right-hand side can be rewritten

E
V
dV@] i~u0,j] iue, j !2u0,j] i

2ue, j #

5E
S
dSiu0,j] iue, j2E

V
dVu0,j] i

2ue, j . ~12!

Noting thatu0,j52ue, j at the surfaceS due to the no-slip
condition, and usingm] i

2ue, j5] j pe , we may rewrite the pre-
vious expression as

E
V
dV] iu0,j] iue, j52E

V
dV@~] iue, j !

21m21uW •¹W pe#.

~13!

Using incompressibility, the last term in the integrand can
rewritten¹W •(uW pe) and converted to a surface integral, whic
vanishes if the pressure is held constant on the ends of
porous medium. Finally, we obtain

k5
L

S S m

PD 2

(
i , j

E
V
dV@~] iu0,j !

22~] iue, j !
2#. ~14!

This result is exact but not useful. However, note tha
the relative change in volume is small,O(e), the second



fir
ra
i

e
th
de
io

e

to
rage

nd

-
ue
ght
On
f
ot
ent
ce.
b-
ure
ap-
p-

aw-
ing
ion

n-

n

as

cept

nu-
one

size
i-

een
the
are
ct,

re

oo

PRE 62 8079PERMEABILITY OF SELF-AFFINE ROUGH FRACTURES
term is second order in the small parameter, so that to
order the decrease in permeability involves only the integ
of the unperturbed velocity over the deleted region, which
easy to calculate.

B. Dependence of permeability on system size

In this section we will determine the decrease in perm
ability due to the presence of a self-affine perturbation in
lower surface of a straight channel, and in particular its
pendence on the size of the channel. To use the prev
result, we begin with a straight channel of widthh0 which
completely contains the rough-walled one~see Fig. 1!, where
we have Poiseuille flow

uW 05
1

2m

P

L
z~h02z!x̂ ~15!

and an unperturbed permeabilityk05h0
2/12. The lower

boundary is shifted byz(x).0, where we assume that th
rangeR of z satisfiese[R/h0!1. The only surviving veloc-
ity derivative is

]zu0,x5
1

2m

P

L
~h022z! ~16!

so that the dissipation integral is simply

E
V
dV(

i , j
~] iu0,j !

25E
0

L

dxE
0

Y

dyE
z(x)

h0
dz~]zu0,x!

2

5S P

mL D 2

YE
0

L

dxH E
0

h0
dz

2E
0

z(x)

dzJ h0
2S z

h0
2

1

2D 2

. ~17!

Up to first order ine this becomes

FIG. 1. Example of the geometry and velocity field in a fractu
with one self-affine surface of roughness exponentz50.80. The
enlargements show the difference in the velocity decay near sm
and rough boundaries.
st
l

s

-
e
-
us

E
V
dV~] iu0,j !

2'S P

mL D 2

YH h0
3

12
L2

h0
2

4 E
0

L

z~x!dxJ
'S P

m D 2 S

L
k0H 12

3

h0
^z&J , ~18!

where^z& is the average ofz over the channel lengthL, and
the cross-sectional area isS5h0Y. The mean perturbation
^z& is computable for a specific profile, but here we wish
use a statistical characterization and relate it to the ave
properties of an ensemble of self-affine surfaces.

The mean height of the surface is half the range, a
therefore has the scalinĝz(x)&5 1

2 R1Lz. Substituting, and
replacing the previous equation in Eq.~9!, we obtain the
first-order perturbative correction to the permeability

k'k0F12
3

2
C1eG . ~19!

We have added an adjustable parameterC1, which is ex-
pected to lie between 1,C1,2, to take account of the dis
tinction between open volume and flowing volume. A val
C151 means that the fracture is equivalent to a strai
channel of height equal to the mean height of the surface.
the other hand, a valueC152 means that the whole region o
fluid below the maximum excursion of the surface is n
contributing to the permeability and the system is equival
to the maximum channel that does not intersect the surfa

Note the lowest-order correction to the permeability o
tained here results from the reduced volume of a fract
compared to that of a straight channel enclosing it, and h
pens to coincide with the lubrication approximation. The a
proach taken here allows us to gain some insight in the dr
backs of this approximation and further improve them. Us
the previous equation we may write the first-order correct
to the flow rate,

Q~L !'Q0F12
3C1R1

2h0
LzG . ~20!

To verify this prediction, we consider a pore space co
sisting of a cubic lattice with periodic boundaries inx andy,
one impermeable wall atz5h0, and a self-affine rough
boundary lying abovez50. We generate an ensemble of te
self-affine surfaces with exponentz50.8, as discussed
above. In Fig. 2 we display the correction to the flow rate
a function of the size of the systemL. The straight line is a fit
to the expected exponent, which does reasonably well ex
at the smallest and largest values ofx. The origins of the
discrepancies are first that the discretization used in the
merical calculation suppresses any roughness less than
unit, which is a significant fraction of the system for smallL.
Moreover, the system should be periodic inL, but the nu-
merical algorithm used to generate it assumes a system
that is a power of 2. As usual, there are computational lim
tations on the sizes we can simulate, and for lengths betw
32 and the accessible maximum of 64, we just truncate
periodic surface. Finally, at the largest system sizes, we
really outside the range of validity of the estimates. In fa
the second term in the flux in Eq.~20! is greater than 1/3 for
the parameters here whenL'16.

th
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FIG. 2. Perturbation in the flow rate in a wide, rough channel as a function of the lengthL of the system forz50.80 and 0.95.
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The fitted valueC1 given thatz50.8 is C151.3021.2
12.1,

meaning that a portion of the fluid does not contributes
convective transport. Expressed in terms of the surf
height variances2 instead of the span range, the exclud
fluid represents 50% of the roughness region. The phys
consideration absent in the leading-order perturbation ca
lation is the fact that fluid velocity sharply decays insi
depressions and corners where resistive eddies are like
occur @25#. This deficiency is associated with the omitte
second term in Eq.~14!, i.e., the correction to the unpe
turbed velocity. In Fig. 1 we magnify two regions close
the lower and upper surfaces, respectively, showing
markedly different way the velocity decays towards the s
face.

We have also simulated a system with an alterna
roughness exponentz50.95, corresponding to a surface wi
more persistent correlations and in a sense a lower fra
dimension~the dimension of the intersection of the surfa
with a plane normal to it isD522z @16#!. In this case the
prefactor in the range scaling law isR150.660.12. In Fig. 2
we show the numerical results; again, good agreement
the predicted behavior is obtained. The fit givesC1

52.0421.8
13.1, suggesting that the low-velocity zones are ev

more important in this case, presumably because the gre
degree of correlation enhances them.

C. Permeability decrease due to zero mean surface
fluctuations

We wish to disentangle the permeability decrease du
the volume reduction of the fracture from that due to lo
velocity zones induced by surface fluctuations. The first s
is to consider ‘‘zero-mean’’ self-affine surfaces, whose me
height h is constant, but which have a tunable roughne
The previous profile,z(x) for 0,x,L, is rescaled so as to
have unit variance, and then multiplied by an adjustable a
plitude A, giving adjustable varianceA2. If we assume that
the effect of the boundary perturbation is to give low velo
ity zones which do not contribute to the flow, and that t
volume of these zones contributing to the dissipation integ
is proportional toA, we would write in analogy to Eq.~20!
o
e

al
u-

to

e
-

e

tal

th

n
ter

to
-
p
n
s.

-

-

al

Q5Q0F12
3C2A

h G . ~21!

Here A is analogous toR1 Lz/2, andC2, an order-1 fitting
coefficient. In Fig. 3 we show the results obtained by n
merical simulation corresponding to a system withh532
and L564 ~and, to be specific,¹W p56.2531026, m50.1,
Y54, which givesQ050.683). The filled circles are the
numerical results, and we see the expected linear decrea
the permeability withA. In fact, a linear fit to the numerica
data givesQ050.7260.03 andC250.7760.1, which are
reasonable numerical values given our assumptions.

Further evidence for our arguments concerning the effe
of low-velocity zones can be adduced by showing that
permeability is unchanged if they are deleted. We begin w
the family of adjustable-amplitude self-affine surface ju
discussed, and filter out the smallest wavelengths from
spectrum so as to generate a smother surface. The sm
surface is then shifted upwards so as to enclose the de
surface fluctuations, in the rms sense. Quantitatively, if

FIG. 3. Flow rate as a function of the relative amplitude of t
surface roughness. Circles and squares correspond to the
rough and the small-wavelength filtered surfaces, respectively.
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have NL points on thex axis, with L5NLD, and filter all
wavelengths smaller thanlc5DNL /NC , then

~Dh!25
1

~NL2NC!2 (
n5NC11

NL

uZ~kn!u2, kn5
2pn

DNL
.

~22!

The prefactor on the right arises from the discrete form
Parseval’s theorem@26#, and in practice we chooseD51.
We then simulate fluid flow in the smoothed fracture, and
Fig. 3 the open squares show the results obtained as a f
tion of roughness amplitudeA. The agreement between th
actual and filtered surfaces is clear.

The extension of this analysis to the three-dimensio
~3D! case is conceptually straightforward, since the decre
in the permeability in this limit just corresponds to the d
crease in pore spacevolume. The latter would beLx3Ly
3R, due to the self-affine topography of the fracture surfa
and the relevant expansion parameter is againR/h0. The
effects of low-velocity regions are presumably the same
well.

IV. NARROW FRACTURES

We now turn to the complimentary situation of narro
fractures, where the pore space is winding and convolu
Consider the situation in which a rock is fractured and
two surfaces are simply displaced by a distanceh!L, per-
pendicular to the mean fracture plane, with no lateral sh
The vertical aperture is constant everywhere, but the ef
tive local aperture for fluid flow, i.e., the local width of th
channel normal to the mean flow direction, strongly depe
on the local angle between the surface and the mean plan
Fig. 4 we show a fracture of lengthL564, generated by a
self-affine surface of exponentz50.8, separated a distanc
h58, along with the~lattice Boltzmann! computed velocity
field.

The theoretical analysis will be based on a kind of lo
lubrication approximation, where the channel is divided in
a sequence of quasilinear segments at varying orienta
angles. First, we estimate the lengthj i in the direction of the
mean flow over which the channel formed by the two fra
ture surfaces can be considered approximately strai

FIG. 4. Flow field in a narrow fracture with a constant gap, a
exponentz50.80. The enlargements illustrate the effect of the
fective aperture on the flow field.
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which is a typical size over which the fluctuations in th
vertical direction are small compared to the effective ap
ture of the channel. Using the self-affine scaling law for t
correlation function,

sz
2~j i!5^@z~x,y!2z~x1j i ,y!#2&5f~ l !S j i

l
D 2z

~23!

wherel is a microscopic length, say a grain size, andf(l )
is then on the order of a grain size squared, we estimate

z~x,y!2z~x1j i ,y!;l S j i

l
D z

. ~24!

A segment of lengthj i is roughly straight when this quantit
is a small fraction ofh, which yields

j i;l S h

l
D 1/z

. ~25!

Returning to the entire fracture, eachj i channel is ori-
ented at some angleu i with respect to the mean plane, an
has effective aperture ai5h cosui , and length j i

i

5j i /cosui . Assuming Poiseuille flow in eachj i channel,
the corresponding local permeability iski5ai

2/12. We com-
pute the pressure drop across the fracture by adding the
pressure drops along the straightj i channels along the whole
path. Noting that the flow rateQ5Ūh5Ū iai is constant,

DP5(
i 51

N

DPi52(
i 51

N S m

ki
Ū i D j i

i

52(
i 51

N S 12m

h2cos2u i
D S Q

h cosu i
D S j i

cosu i
D

52
12mj iQ

h3 (
i 51

N

cos24~u i !

52
12mj iŪ

h2 (
i 51

N

cos24~u i !. ~26!

Finally, noting thatN5L/j i@1 is the number of channels
we can convert the sum into an average over the distribu
of angles, and write for the permeability

k5
h2

12

1

^cos24~u!&
. ~27!

We can give a simple if heuristic estimate of the perm
ability as follows. Since the exponentz,1, the channels
have small vertical fluctuations, and we can approximate
cosine as

cosu5
j i

Aj i
21sz

2~j i!
'12

1

2 S sz~j i!

j i
D 2

. ~28!

Substituting in Eq.~27!, we obtain

-
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k'
h2

12F122S sz~j i!

j i
D 2G . ~29!

A more convincing evaluation of the angular avera
makes use of the actual height distribution. Experimen
measurements indicate a Gaussian distribution for the sp
correlation in heights,Z[z(x,y)2z(x1j i) @18#, and in fact
our numerical procedure for generating self-affine surfa
also gives a Gaussian distribution forZ. We illustrate this
point in Fig. 5, where we plot our generated probability d
tribution function ofZ, corresponding to different values o
j i , along with their Gaussian fits

p~Z!5
1

A2psz
2~j i!

expS 2
Z2

2sz
2~j i!

D . ~30!

We also plot the~numerically obtained! dependence of the
mean spatial correlation,̂Z2&5sz

2(j i), on j i for two
choices ofz, confirming the scaling given above in Eq.~23!.

The angular average is then given by

^cos24u&5E dZp~Z!F112S Z

j i
D 2

1S Z

j i
D 4G

5112S sz~j i!

j i
D 2

13S sz~j i!

j i
D 4

. ~31!

Using Eqs.~23! and ~27!, this result is consistent with th
previous estimate Eq.~29! based on simple scaling argu
ments.

FIG. 5. Top: semilogarithmic plot of the distribution of heigh
Z5z(x)2z(x1j i) for different values ofj i for a self-affine sur-
face with exponentz50.80. The solid lines are Gaussian fits to t
numerical results. Bottom: variation of the mean spatial correla
^Z2& with j i for z50.80 and 0.95.
l
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-

Moreover, aside from the purely numerical coefficien
we can argue that scale invariance requires the angular a
age to have the form given in Eq.~31!. The self-affine prop-
erty of the fracture geometry implies that the probability d
tribution of heightsp(Z) should only depend on the rescale
variableZ/j

i
z @18#. More specifically,

p~Z!5sz
21~j i!c@Z/sz~j i!#, ~32!

where the prefactor comes from the normalization.
^cos24u& is evaluated for this distribution, we obtain a var
ant of Eq.~31! where the numerical coefficients 2 and 3 a
replaced by the moments of the functionc, leading to the
same scaling form for the permeability.

Finally then, using the leading term in Eq.~31! for the
angular average, and Eq.~25! for the value ofj i , we have
the result for the permeability of a narrow two-dimension
self-affine fracture,

k5
h2

12F122S f~ l !

l 2 D S h

l
D (2z22)/zG . ~33!

The principal approximation used in obtaining this result
that the fracture aperture may be regarded as a sequen
almost-straight segments.

To test Eq.~33! numerically, we first recast it in terms o
the fluid flux. For a straight channel of heighth, width Y, and
length L, and pressure dropP, we have flux Q0
5h3PY/12mL. Thus

Q02Q'C3

PY

6m
l (222z)/zh(5z22)/z, ~34!

whereC3 is another adjustable parameter expected to be
order 1.

In Fig. 6 we present the correction toQ0 as a function of
the distance between the opposite surfacesh, for both rough-
ness exponentsz50.80 and z50.95. We find the good
agreement for the predicted exponent for the casez50.80.

n

FIG. 6. Change in the flow rate as a function of the gaph
between vertically displaced self-affine surfaces, for exponenz
50.80 and 0.95~system lengthL5128).
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The only adjustable parameter is the coefficient, which
found to beC353.161.2 in fairly good agreement with th
expected value. The fitted exponent is 2.4360.08, which
agrees with the predicted value (5z22)/z52.5. On the
other hand, in the casez50.95 the numerical results deviate
from the asymptotic behavior at small distances between
surfaces. That is because the successive powers given b
expansion of Eq.~33! are very close to each other@the dif-
ference between them is (2z22)/z'0.1#. Again if only the
coefficient is fitted, we findC350.3560.21. Fitting also the
exponent, but using only the numerical simulations w
large separation between surfaces, we obtain 2.7160.39
where (5z22)/z52.89.

In Fig. 7 we compare numerical results corresponding
systems of different sizes with the same roughness expo
z50.80. It can be seen that the accuracy in the expone
improved as the size of the system is larger. We obtai
value 2.5260.04 for the largest system with sizeL5256.

As mentioned, the crossover between small and large
face roughness~compared to the mean aperture of the fra
ture!, can be addressed numerically. The narrow fracture
gime, whereQ02Q}h(5z22)/z, is expected to be valid whe
j i!L. The critical mean aperture valuehc which corre-
sponds toj i;L turns out to be, using the fitted value ofC3 ,
hc;100. On the other hand, the small surface-deviation s
ing behavior can be obtained from Eq.~20!, whereL is the
constant size of the system andh0 is now the variable mean
aperture of the fractureh,

Q02Q'
PY

12m

3C1R1Lz

2
h2. ~35!

In Fig. 8 we display the correction toQ0 in the range 2
<h<128 for a system sizeL564. A small deviation from
the narrow fractures regime can be observed, startingh
564. As the size of the gap becomes larger, the correctio
the unperturbed flow rateQ0 decreases as a power ofh.
Therefore, both larger computational time~by starting the
simulation from an initially at rest fluid, the time interval t
reach the steady asymptotic value grows as the square o

FIG. 7. Change in the flow rate as a function of the gaph for
z50.80 and variousL. The solid line is a fit to the numerical resul
obtained in the largest system (L5256).
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gap size@27#! and higher accuracy in the fluid field close
the solid surface are needed. Our current computational l
tations prevents us to simulate systems whereL@j i . Nev-
ertheless, we believe that the observed deviation corresp
to a crossover towards a smaller exponent (h2) as expected
from the previous discussion.

V. FRACTURES WITH SHIFTED SURFACES

In the field, when a rock is fractured its two sides may
shifted laterally parallel to the mean plane by geological p
cesses. We now consider how our results for permeability
modified by this effect. The situation is somewhat differe
in two dimensions than in three. In order that a tw
dimensional fracture remains open it is necessary that
two sides do not touch, whereas in three dimensions in
presence of a lateral shift it is easy for the two surfaces
touch at one or a few points in the plane, while the apert
is still open to flow. Furthermore, in two dimensions wh
the fracture nearly touches at a point, the permeability w
be dominated by the large pressure drop needed to force
through this narrow gap. In fact, in this case an estimate
the permeability is simplyk'amin

2 /12, whereamin is the
minimum value of the aperture. In this section we addr
the complimentary case where the fracture is distinctly op

As discussed in Sec. II, in the presence of a lateral shifd,
the fracture aperture is now the random functionad(x,y)
given by Eq.~3! rather than the constanth. However, there is
a residual correlation between the two sides of the fractu
which allows us to relate the permeability to the self-affi
statistics. First, we determine a condition on the shift for
fracture to be open. Provided the average properties of
surface are statistically stationary~independent ofx), we
have^ad(x)&5h, and the variance of the aperture distrib
tion is

sa
2~d![Š@ad~x!2^ad~x!&#2

‹

5^@z~x1d!2z~x!#2&5sz
2~d!5f~ l !S d

l
D 2z

. ~36!

FIG. 8. Change in the flow correction as a function of the gah
for z50.80 andL564. The solid line is the best fit to the narro
fractures regime obtained. At large gaps (h>64) a small deviation
towards a smaller exponent can be observed



gt
itt
W

ef

n

s
r

er
e
as
o

us
o

a
fo
th
n
d
m
i

ri

p-

ion,
om-
id

p.
ec-
The
c-
er-

de-
he
to
lytic
tude
l
a

ta-
ult
c-
Fi-

hift
om-
wo-
an-

ical
he
ns
ri-

nge.
al
not
in

ntly
asi-
ri-
its

nal
ill

in
ns.
s,
o-
es

nces
.S.
re
m-

h

l

8084 PRE 62GERMAN DRAZER AND JOEL KOPLIK
The aperture is surely open whensa(d)!h, which givesd
!l (h/l )1/z, but from Eq.~25! this is justd!j i . In other
words, the shift must be small compared to the typical len
of a straight segment of unshifted channel, and there is l
change in the geometry compared to the unshifted case.
expect, therefore, that the previous result, Eq.~34!, should
apply at least up to a different value of the numerical co
ficient C3.

In Fig. 9 we show LB simulation results for the correctio
to the unperturbed flow rateQ0, for different values of the
shift d. We see that the behavior is consistent with the
arguments for all values of the shift, with deviations occu
ring when the shift is too large for the mean aperture. Sev
other shift values were simulated obtaining the same gen
behaviors as in those shown in Fig. 9. As is often the c
with this type of scaling argument, reasoning in terms
asymptotic limits leads to conditions that one quantity m
be much larger than another, but in practice the range
validity is much wider.

VI. CONCLUSIONS

We have studied the permeability of two-dimension
self-affine fractures, using asymptotic analytic arguments
wide and narrow apertures. Numerical simulations using
lattice Boltzmann method have verified the predictions, a
also suggest a smooth crossover between the limits use
the derivations. We have obtained expressions for the per
ability in which the usual expression for straight channels
modified by terms related to the Hurst exponent characte
ing the fracture surface.

In previous works, the lubrication limit was used to a

FIG. 9. Change in the flow rate correction as a function of t
gap h for exponentz50.80 and various lateral shiftsd. The solid
line is a fit to the cased50 shown in Fig. 6. The two vertica
dashed lines divide the regions (h/l ),(d/l )z and (h/l )
.(d/l )z for d522 andd546.
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proximate the velocity field@14,15#, and to obtain the per-
meability scaling in the limit of large system size@13#. Our
results show that, in addition to the aperture spatial variat
there are other important effects due to the complex ge
etry of the fracture. That is, the sharp decay of the flu
velocity inside depressions and corners~low-velocity zones!,
and the correction due to the tortuosity of the fracture ga

In the wide-gap case, we obtained a perturbative corr
tion related to the roughness exponent and amplitude.
result is formally identical to the lubrication theory predi
tion, but the corrections are known, in principle, and furth
more we can understand the discrepancies between the
rived numerical coefficient and simulation in terms of t
effects of low-velocity zones which do not contribute
transport. In the narrow gap case, we also derive an ana
correction related to the roughness exponent and ampli
~or microscopic lengthl ). The analysis is based in a loca
lubrication approximation, dividing the whole fracture into
chain of approximately linear channels with varying orien
tion angles with respect to the main flow direction. The res
is equivalent to a correction due to the tortuosity of the fra
ture, where the tortuosity itself depends on the gap size.
nally, we show that in the case when there is a lateral s
between the surfaces, there is no qualitative change c
pared to the unshifted case. This is basically due to the t
dimensional geometry, where in order to have an open ch
nel the shift must be small compared to the size of the typ
length of a quasilinear segment of the unshifted fracture. T
two-dimensional nature of the problem imposes restrictio
on the range of validity of analytic estimates, but the nume
cal results are in general agreement over a much wider ra

The extension of this work to fully three-dimension
fractures is in progress. The case of a wide gap does
require any further significant conceptual effort. However,
the narrow gap case the fracture geometry is significa
more complicated because it is not feasible to use any qu
one-dimensional approximation for the flow paths. Nume
cal simulations are certainly feasible, at least up to size lim
imposed by one’s computational hardware, but additio
ideas are required for analytic arguments. Future work w
consider diffusion, and also convection plus diffusion,
these self-affine fractures, in both two and three dimensio
The LB method is quite simple for numerical simulation
and we will explore the way in which the roughness exp
nent enters into the quantitative behavior, along the lin
given here.

ACKNOWLEDGMENTS

We thank J. P. Hulin, F. Plouraboue´, and M. Tanksley for
discussions. This research was supported by the Geoscie
Research Program, Office of Basic Energy Sciences, U
Department of Energy, and computational facilities we
provided by the National Energy Resources Scientific Co
puter Center.

e

@1# F. A. L. Dullien, Porous Media: Structure and Fluid Trans-
port, 2nd ed.~Academic Press, New York, 1991!.

@2# M. Sahimi, Rev. Mod. Phys.65, 1393~1993!.
@3# P. M. Adler and J.-F. Thovert,Fractures and Fracture Net-
works ~Kluwer, Boston, 1999!.
@4# Flow and Contaminant Transport in Fractured Rock, edited by

J. Bear, C.-F. Tsang, and G. de Marsily~Academic, New York,
1993!.



-

w
ng
.,

r

ro

ia

v.

s.

-

tt.

n-
-

n-

PRE 62 8085PERMEABILITY OF SELF-AFFINE ROUGH FRACTURES
@5# M. Sahimi, Flow and Transport in Porous Media and Frac
tured Rock~VCH, Weinheim, 1995!.

@6# NAS Committee on Fracture Characterization and Fluid Flo
Rock Fractures and Fluid Flow: Contemporary Understandi
and Applications~National Academy Press, Washington, D.C
1996!.

@7# For a review, see E. Bouchaud, J. Phys.: Condens. Matte9,
4319 ~1997!.

@8# E. Bouchaud, G. Lapasset, and J. Plane`s, Europhys. Lett.13,
73 ~1990!.

@9# F. Plouraboue´ et al., Phys. Rev. E53, 277 ~1996!.
@10# J. Boffa, C. Allain, and J. P. Hulin, Eur. Phys. J. A2, 281

~1998!.
@11# J. P. Hulin~private communication!.
@12# I. Ippolito, J. Koplik, and J. P. Hulin, Phys. Fluids A5, 1333

~1993!.
@13# S. Roux, J. Schmittbuhl, J.-P. Vilotte, and A. Hansen, Eu

phys. Lett.23, 277 ~1993!.
@14# S. Roux, F. Plouraboue´, and J. P. Hulin, Transp. Porous Med

32, 97 ~1998!.
@15# F. Plouraboue´, J.-P. Hulin, S. Roux, and J. Koplik, Phys. Re

E 58, 3334~1998!.
@16# J. Feder,Fractals ~Plenum Press, New York, 1988!.
,

-

@17# B. B. Mandelbrot,The Fractal Geometry of Nature~W. H.
Freeman, New York, 1983!.

@18# F. Plouraboue´, P. Kurowski, J.-P. Hulin, and S. Roux, Phy
Rev. E51, 1675~1995!.

@19# R. F. Voss~unpublished!; in Fundamental Algorithms in Com
puter Graphics, edited by R. A. Earnshaw~Springer-Verlag,
Berlin, 1985!, pp. 805–835.

@20# D. H. Rothman and S. Zaleski,Lattice-gas Cellular Automata
~Cambridge University Press, Cambridge, England, 1997!.

@21# Y. H. Qian, D. d’Humieres, and P. Lallemand, Europhys. Le
17, 479 ~1992!.

@22# P. L. Bathnagar, E. P. Gross, and M. Krook, Phys. Rev.94,
511 ~1954!.

@23# D. J. Bergman, Phys. Rev. B39, 4598~1989!.
@24# D. J. Wilkinson~private communication!.
@25# H. K. Moffatt, J. Fluid Mech.18, 1 ~1964!.
@26# H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Fla

nery,Numerical Recipes in Fortran: The Art of Scientific Com
puting, 2nd ed.~Cambridge University Press, Cambridge, E
gland, 1988!, http://lib-www.lanl.gov/numerical/index.html.

@27# G. K. Batchelor,An Introduction to Fluid Dynamics~Cam-
bridge University Press, New York, 1999!.


